

KATEDRA FIZYKI

WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA [KF)

LABORATORIUM Z PRZEDMIOTU METODY REZONANSOWE

ĆWICZENIE NR MR-3

ELEKTRONOWY REZONANS PARAMAGNETYCZNY JONÓW Mn2+ W MONOKRYSZTAŁACH O SYMETRII OSIOWEJ

I. Wstęp teoretyczny

Mangan należy do pierwiastków przejściowych grupy żelaza. Jego liczba porządkowa wynosi 25, względny ciężar atomowy 54,94. W przyrodzie występuje on w postaci jednego trwałego izotopu ⁵⁵Mn. Układ elektronów w powłoce atomu obojętnego jest następujący: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^2$, przy czym elektrony zewnętrzne $3d^5 4s^2$ decydują praktycznie o jego właściwościach fizykochemicznych.

Z punktu widzenia paramagnetyzmu najbardziej interesujący jest dwudodatni jon tego pierwiastka t.j. Mn²⁺. Jonowi temu przypisujemy brak elektronów 4s² przy równoczesnym założeniu, że zewnętrznymi elektronami jest piątka elektronów 3d⁵, w wyniku czego w oparciu o reguły Hunda można stwierdzić, że najniższym (podstawowym) poziomem energetycznym będzie poziom odpowiadający równoległemu ustawieniu indywidualnych spinów (nie występuje sparowanie elektronów), scharakteryzowany następującymi liczbami kwantowymi:

L=0 (orbitalny siglet) i S=
$$5/2$$
 (1)

gdzie L- wypadkowa (efektywna) liczba orbitalna) S – wypadkowy spin jonu.

Często poziom ten zapisuje się krótko
$$^{2s+1}S_s \equiv {}^6S_{5/2}$$
 (2)

gdzie (2S+1)=6 określa stopień degeneracji (zwyrodnienia)^{*} poziomu ze względu na wypadkową wartość spinu.

W następstwie tego, że jon ten zwykle znajduje się w krysztale i podlega różnego rodzaju oddziaływaniom (np. z elektronami innych atomów i jonów tworzących sieć), co ogólnie określamy jako działanie elektrycznego pola krystalicznego) degeneracja poziomu ⁶S_{5/2} pochodząca od spinu elektronowego może być częściowo zniesiona. Praktycznie biorąc

^{*} Poziom energetyczny uważamy za zdegenerowany (zwyrodniały), gdy tej samej wartości energii odpowiada więcej niż jeden stan (więcej niż jedna funkcja stanu Ψ z równania Schrödingera opisująca układ)

poziom ten może się rozszczepić na pewną ilość podpoziomów. Np. w polu elektrycznym o symetrii sześcianu (polu kubicznym) poziom ${}^{6}S_{5/2}$ rozszczepia się na podpoziom dwukrotnie zdegenerowany (dublet) i czterokrotnie zdegenerowany (kwartuplet) [Rys. 1a], a w polu o symetrii osiowej na trzy odległe w skali energii dublety [Rys. 1b].

Rys. 1. Rozszczepienie poziomu podstawowego Mn^{2+} *w polu krystalicznym: a) kubicznym, b) osiowym.*

Wielkości a i D charakteryzują moc (siłę) pola elektrycznego (krystalicznego) i są ściśle związane z pewnymi parametrami określonymi w oparciu o eksperymentalne widma EPR.

Rys. 2. Mechanizm powstawania widma EPR jonu Mn^{2+} .

Stałe pole magnetyczne B usuwa całkowicie zwyrodnienia związane ze spinem (efekt Zeemana). Uproszczony układ zeemanowskich poziomów energetycznych jonu Mn²⁺ oraz subtelną i nadsubtelną strukturę widma EPR przedstawiono na rysunku 2.

Ponieważ spin elektronowy oddziałuje z jądrem Mn^{2+} , które również posiada spin I=5/2, każdy podpoziom M_S jest zdegenerowany sześciokrotnie (ogólnie: 2I+1) ze względu na to oddziaływanie. Stąd ogólny stopień degeneracji poziomu ⁶S_{5/2} jonu Mn²⁺ wynosi:

$$N = (2S+1)(2I+1) = 36 \tag{3}$$

a w polu magnetycznym B występuje 36 rozdzielonych podpoziomów.

Uwzględniając reguły wyboru przejść w EPR

$$\Delta M_s = \pm 1 \tag{4}$$

łatwo przewidzieć, że widmo EPR jonu Mn²⁺ winno obejmować

$$\underbrace{2S}_{\substack{\text{struktura}\\\text{subtelna}\\(\text{SS})}} + \underbrace{(2I+1)}_{\substack{\text{struktura}\\\text{nadsubtelna}\\(\text{NSS})}} = 5 \text{ grup po 6 linii}$$

I.1. Widmo EPR jonów Mn²⁺ w monokryształach o symetrii osiowej

Widmo EPR jonów Mn^{2+} w monokryształach o symetrii osiowej można opisać hamiltonianem spinowym w postaci:

$$\mathcal{H} = g\beta BS + D\left[S_z^2 - \frac{35}{12}\right] + ASI + \frac{1}{6}a\left[S_x^4 + S_y^4 + S_z^4 - \frac{707}{16}\right]$$
(5)

Pole krystaliczne w sieci monokryształu o symetrii osiowej można przedstawić jako złożenie pól regularnego (kubicznego) i osiowego. Stąd wyrażenie na zeemanowskie wartości energii jonu Mn²⁺ w monokrysztale poddanym działaniu stałego pola magnetycznego B uwzględnia ten fakt poprzez wprowadzenie odpowiednich członów. Ogólnie:

$$E_{M,m} = g \beta M_S B + A M_S m + f_0 + f_C + X$$
 (6)

gdzie

 $g\beta M_{S}B$ - energia zeemanowska;

 β - magneton Bohra

AM_sm - energia oddziaływania spinu elektronowego z jądrowym;

 $f_0 + f_C$ - energia oddziaływania spinu z polem elektrycznym (f_0 - z polem osiowym, f_C - z polem kubicznym);

X – poprawki wyższych rzędów wynikających ze sprzężenia oddziaływań.

We wzorze (5) i (6) A jest stałą oddziaływania spinu elektronowego z jądrowym prowadzącego do powstania tzw. nadsubtelnej struktury widma. Już nawet fakt, że pole krystaliczne posiada określoną symetrię (człony f₀ i f_c) czyni oczywistym, że wartości podpoziomów energetycznych $E_{M,m}$ będą zależne od kątów, jakie tworzy pole \vec{B} (a także pole \vec{B}_1 zmiennego pola fali elektromagnetycznej oddziaływującej z próbką) z osiami krystalograficznymi (ściśle z osiami centrum paramagnetycznego, czyli jonu Mn^{2+}). Z podobną sytuacją mamy do czynienia w przypadku wyrażenia na wartość pola B_{rez} , przy której spełniony jest warunek rezonansu:

$$hv = E_{M_{s},m} - E_{M_{s-1},m}$$
(7)

przy praktycznym założeniu v=const. ≈ 9,5 GHz; pasmo X.

Latwo pokazać, że ogólnie zależność tę można określić (w przypadku $\overline{B_1} \perp \overline{B}$) przy wykorzystaniu dwóch kątów θ i φ , gdzie θ - kąt pomiędzy polem B a osią krystaliczną "c" (w "języku EPR" osią "z" centrum), ($0 \le \theta \le \pi$), a φ - kąt między osią a i polem \overline{B}_0 (osią "x" a polem B w płaszczyźnie \perp do "z") ($0 \le \varphi \le 2\pi$). Jest to tzw. <u>anizotropia widma.</u>

Dla przypadków:
$$\begin{cases} \varphi = 0^{\circ} & \varphi = 0^{\circ} \\ \theta = 0^{\circ} & \theta = 90^{\circ} \end{cases}$$

wyrażenia na wartości pól rezonansowych (położenia linii w skali pola przy stałej częstości pola fali elektromagnetycznej) mają postać:

$$\begin{cases} \varphi = 0^{\circ} \\ \theta = 0^{\circ} \end{cases} \qquad B_{\parallel} = B_{0\parallel} + (2M_{s} - 1)D - Am - \frac{A^{2}}{2B_{0}} \left[\left(\frac{35}{4} - m^{2} \right) + m(2M_{s} - 1) \right] \\ + \frac{4}{3}a; \quad \text{dla przejścia} \quad M_{s} = -\frac{3}{2} \rightarrow -\frac{5}{2} \end{cases}$$
(8)

$$\begin{aligned} &-\frac{5}{3}a; \quad \text{dla przejścia} \ M_{s} = -\frac{1}{2} \rightarrow -\frac{3}{2} \\ &0; \quad \text{dla przejścia} \ M_{s} = +\frac{1}{2} \rightarrow -\frac{1}{2} \\ &+\frac{5}{3}a; \quad \text{dla przejścia} \ M_{s} = +\frac{3}{2} \rightarrow +\frac{1}{2} \\ &-\frac{4}{3}a; \quad \text{dla przejścia} \ M_{s} = +\frac{5}{2} \rightarrow +\frac{3}{2} \\ &\begin{cases} \varphi = 0^{\circ} \\ \theta = 90^{\circ} \end{cases} \qquad B_{\perp} = B_{0\perp} + \frac{1}{2}(2M_{s} - 1)D - Am - \frac{A^{2}}{2B_{0}} \left[\left(\frac{35}{4} - m^{2} \right) + m(2M_{s} - 1) \right] \right] \end{aligned} \tag{9}$$

$$&+ \frac{D^{2}}{B_{0}} + \frac{1}{2}a; \quad \text{dla przejścia} \ M_{s} = -\frac{3}{2} \rightarrow -\frac{5}{2} \\ &- \frac{5}{4}\frac{D^{2}}{B_{0}} - \frac{5}{8}a; \quad \text{dla przejścia} \ M_{s} = -\frac{1}{2} \rightarrow -\frac{3}{2} \\ &- 2\frac{D^{2}}{B_{0}} + 0; \quad \text{dla przejścia} \ M_{s} = +\frac{1}{2} \rightarrow -\frac{1}{2} \\ &+ \frac{5}{4}\frac{D^{2}}{B_{0}} + \frac{5}{8}a; \quad \text{dla przejścia} \ M_{s} = +\frac{3}{2} \rightarrow +\frac{1}{2} \\ &+ \frac{D^{2}}{B_{0}} + \frac{1}{2}a; \quad \text{dla przejścia} \ M_{s} = +\frac{5}{2} \rightarrow +\frac{3}{2} \end{aligned}$$

We wzorach (8) i (9) $B_{0\parallel}$ oraz $B_{0\perp}$ jest wartością pola przy której wystąpiłby rezonans, gdyby nie było rozszczepienia w polu krystalicznym oraz oddziaływania ze spinem jądra. Obserwowałoby się wówczas tylko jedną linię dla dowolnej orientacji co wynika z zależności:

$$h\nu = g\beta B_0 \tag{10}$$

Ponadto, we wzorach (8) i (9) g stanowi parametr rozszczepienia spektroskopowego, D – jest parametrem rozszczepienia w polu krystalicznym o symetrii osiowej, a – parametrem pola krystalicznego o symetrii kubicznej.

I. Zagadnienia do opracowania

- 1. Istota zjawiska EPR.
- 2. Ogólna budowa spektrometru EPR.

3. Struktura subtelna i nadsubtelna widma EPR jonu paramagnetycznego o spinie elektronowym S>1/2 i jądrowym I>1/2.

4. Relacje opisujące wartości energii oraz pól rezonansowych jonu Mn^{2+} (S=5/2, I=5/2) w sieci kryształu.

5. Hamiltonian spinowy jonu Mn²⁺ dla układu o symetrii osiowej.

Celem ćwiczenia jest zaznajomienie studentów z prostą metodą analizy widma EPR charakteryzującego się dobrze rozdzieloną strukturą subtelną i nadsubtelną.

II. Eksperymentalny pomiar stałych g, D, a i A

II.1. Wyznaczanie stałej A struktury nadsubtelnej

Rys. Widmo EPR jonów Mn⁺² dla przejść dozwolonych $|M_s, m\rangle \leftrightarrow |M_s - 1, m\rangle$.

Stałą A struktury nadsubtelnej obliczamy mierząc położenia linii odpowiadających przejściom (położenie między trzecią a czwartą linią centralnego sekstetu):

1)
$$M_s = +\frac{1}{2} \rightarrow -\frac{1}{2}; m = +\frac{5}{2} (B_{5/2})$$

2) $M_s = +\frac{1}{2} \rightarrow -\frac{1}{2}; m = -\frac{5}{2} (B_{-5/2})$
 $|A| = \left| \frac{B_{5/2} - B_{-5/2}}{5} \right| [mT]$ (11)

lub

$$|A| = \left| \frac{B_{5/2} - B_{-5/2}}{5} \right| (mT) \cdot 4,68g \left[10^{-4} \text{ cm}^{-1} \right]$$
(11a)

II.2. Wyznaczanie stałych D i a

Stałe D i a obliczamy mierząc położenia środków grup linii (odpowiadających przejściom):

$$M_{s} = -\frac{3}{2} \rightarrow -\frac{5}{2}; \ B_{1sr} = B_{0\parallel} - 4D + \frac{4}{3}a_{0} - \frac{17}{2}\frac{A^{2}}{B_{0}}$$
(12.1)

$$M_s = -\frac{1}{2} \rightarrow -\frac{3}{2}; B_{2sr} = B_{0\parallel} - 2D - \frac{5}{3}a_0 - \frac{17}{2}\frac{A^2}{B_0}$$
 (12.2)

$$M_{s} = +\frac{3}{2} \rightarrow +\frac{1}{2}; B_{4sr} = B_{0\parallel} + 2D + \frac{5}{3}a_{0} - \frac{17}{2}\frac{A^{2}}{B_{0}}$$
 (12.3)

$$M_{s} = +\frac{5}{2} \rightarrow +\frac{3}{2}; B_{5sr} = B_{0\parallel} + 4D - \frac{4}{3}a_{0} - \frac{17}{2}\frac{A^{2}}{B_{0}}$$
 (12.4)

Ze wzoru 12.2 i 12.3 otrzymujemy:

$$4D + \frac{10}{3}a = B_{4\pm r} - B_{2\pm r}$$
(13a)

Oraz ze wzoru 12.1 i 12.4 otrzymujemy:

$$8D - \frac{8}{3}a = B_{5\$r} - B_{1\$r}$$
(13b)

Układ równań 13a i 13b umożliwia proste obliczenie D i a w [mT]. Jeśli chcemy obliczyć wartości tych parametrów w cm⁻¹ należy wykorzystać następujące zależności:

$$D \left[w \ 10^{-4} cm^{-1} \right] = D \left[w \ mT \right] \cdot 4,68 \text{ g}$$
(13c)

a
$$\begin{bmatrix} w \ 10^{-4} cm^{-1} \end{bmatrix} = a \begin{bmatrix} w \ mT \end{bmatrix} \cdot 4,68 \text{ g}$$
 (13d)

II.3. Wyznaczanie stałej g

Wartości g_{\parallel} i g_{\perp} można obliczyć w oparciu o wzór (10):

$$g = \frac{h\nu}{\beta B} \tag{14}$$

gdzie: h = 6,626736 · 10⁻³⁴ Js, β = 9,274078 · 10⁻²⁴ J/T, a v jest zmierzoną częstotliwością promieniowania oddziałującego z próbką umieszczoną we wnęce rezonansowej.

Jak już wyżej wspomniano w przypadku widma EPR jonu Mn^{2+} z uwagi na jego bogatą strukturę mamy do czynienia nie z jedną linią, lecz 30–ma. Toteż wartość pola we wzorze

(10): musi być określona pośrednio. Łatwo to uczynić w oparciu o wzory (8) i (9) dla przypadku przejść (linii):

$$M_{s} = +\frac{1}{2} \rightarrow -\frac{1}{2}; \mathbf{m} = -\frac{1}{2}$$
$$M_{s} = +\frac{1}{2} \rightarrow -\frac{1}{2}; \mathbf{m} = \frac{1}{2}$$

Wtedy dla

a) orientacji równoległej ($\varphi = 0^\circ$, $\theta = 0^\circ$) otrzymujemy równanie na B_{0||} w postaci:

$$\frac{1}{2} \left(\mathbf{B}_{1/2}^{|\,|} + \mathbf{B}_{-1/2}^{|\,|} \right) = \mathbf{B}_{0||} - \frac{17}{4} \frac{\mathbf{A}^2}{\mathbf{B}_{0||}}$$
(15)

b) zaś dla orientacji prostopadłej ($\varphi = 0^\circ$, $\theta = 90^\circ$)

$$\frac{1}{2} \left(\mathbf{B}_{1/2}^{\perp} + \mathbf{B}_{-1/2}^{\perp} \right) = \mathbf{B}_{0\perp} - \frac{17}{4} \frac{\mathbf{A}^2}{\mathbf{B}_{0\perp}} - 2 \frac{\mathbf{D}^2}{\mathbf{B}_{0\perp}}$$
(16)

Wartość pól $B_{1/2}$ i $B_{-1/2}$ odczytujemy z widm pomiarowych otrzymanych dla odpowiednich orientacji równoległej i prostopadłej pola magnetycznego względem osi symetrii kryształu. Wartości g_{\parallel} i g_{\perp} obliczamy ze wzoru (14) wykorzystując wyznaczone wartości $B_{0\parallel}$ i $B_{0\perp}$ przy pomocy zależności (15) i (16).

III.Przebieg ćwiczenia

III.1. Czynności wstępne

1. Zamocować goniometr na rezonatorze.

2. Sprawdzić – z użyciem mikroskopu optycznego typ MWD-1 – orientację "startową" próbki kryształu zamocowanej na stoliku uchwytu goniometrycznego. Orientacja jest prawidłowa jeśli krótka przekątna romboedrycznej próbki kryształu jest ustawiona wzdłuż osi trzymaka.

3. Włączyć spektrometr

III.2. Rejestracja widm EPR jonu Mn²⁺ w sieci kryształu:

1. Umieścić uchwyt goniometryczny z próbką w osadzie goniometru. Maksymalne wciśnięcie trzymaka oznacza umieszczenie próbki w centrum wnęki rezonansowej. Ustalić orientację noniusza uchwytu względem skali goniometru tak, aby zera tych skali się pokrywały.

2. Dostroić częstość generatora mikrofal do częstości wnęki z próbką.

3. Dobrać poziom mocy mikrofal doprowadzonej do wnęki z próbką.

4. Rejestracja wstępna widma:

4.1. W programie nastaw parametrów rejestracji ustalić następujące wartości:

- pole stałe:

komendą "START" uruchomić program rejestracji.

4.2. Po zakończeniu rejestracji wstępnej sprawdzić przydatność przyjętych nastaw w programie i dokonać ewentualnej korekcji nastaw.

Rejestracja zasadnicza:

5.1. Dokonać rejestracji widm EPR dla przedziału od -10° do 100° orientacji kryształu (uchwytu) z zachowaniem "kroku" zmian orientacji co 10°.

IV. Opracowanie pomiarów

1.Na podstawie wartości pól rezonansowych wyznaczyć parametry g_{\parallel} , g_{\perp} , D, a w oparciu o podane wyżej zależności.

V. Literatura

1. J. Stankowski, W. Hilczer "Wstęp do spektroskopii rezonansów magnetycznych", PWN Warszawa 2005;

2. L. A. Blumenfeld, W. W. Wojewodski, A. G. Siemionow "Zastosowanie elektronowego rezonansu w chemii" PWN Warszawa 1967, str. 108-135;

3. P. Poole, Jr. "*Electron spin resonance. A comprehensive treatise on experimental techniques.*" Interscience Publishers, A Division oh John Wiley & Sons. New York-London-Sydney 1967 (w jęz. ros.: C. Pul; Technika EPR spektroskopii. Mir. Moskva 1970);

4. J. Stankowski, A. Graja "Wstęp do elektroniki kwantowej" WKiŁ Warszawa 1972.