

KATEDRA FIZYKI

WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW

POLITECHNIKA CZĘSTOCHOWSKA

LABORATORIUM Z PRZEDMIOTU METODY REZONANSOWE

ĆWICZENIE NR MR-5

ELEKTRONOWY REZONANS PARAMAGNETYCZNY WIDM PROSZKOWYCH Mn2+ W CaO

I. Wstęp teoretyczny

Krzemiany, glinokrzemiany, wapienie i gipsy są grupą minerałów najbardziej rozpowszechnionych w skorupie ziemskiej. Minerały te stanowią podstawowe składniki do produkcji wiażacych materiałów budowlanych. Elektronowy rezonans paramagnetyczny tych materiałów uwarunkowany jest istnieniem śladowych ilości jonów metali przejściowych (takich jak: Mn, Fe, Ni, Cu Ti, Cr) oraz różnych innych defektów strukturalnych o charakterze paramagnetycznym. W surowcach do materiałów wiążących materiałów budowlanych występują najczęściej niewielkie ilości manganu Mn²⁺. Jony manganu podstawiają atomy wapnia Ca^{2+} , co pozwala metodą EPR w łatwy sposób śledzić m.in. procesy strukturalne, fizykochemiczne, kinetykę wypalania oraz przemiany fazowe. Tlenek wapnia zwany w technologii wapnem palonym otrzymuje się w temperaturze 1173K pod ciśnieniem normalnym. Proces dysocjacji węglanu wapnia przebiega według reakcji: $CaCO_3 + Q \Leftrightarrow CaO + CO_2$. Jest to reakcja endotermiczna. Ilość energii potrzebnej do dekarbonizacji 1 mola weglanu wapnia wynosi 178,16 kJ. Temperatura dysocjacji rośnie wraz ze wzrostem ciśnienia. CaO jest białym proszkiem bardzo higroskopijnym - gwałtownie reaguje z wodą wydzielając ciepło. Z powietrza pochłania dwutlenek wegla w wyniku czego zmienia się z powrotem w weglan wapnia. Widmo absorpcji EPR w sproszkowanej próbce jest superpozycja widm pochodzacych od pojedvnczych (przypadkowo zorientowanych) krystalitów.

EPR jonów Mn²⁺ w regularnym polu krystalicznym.

Sześciokrotnie zdegenerowany poziom podstawowy jonu Mn^{2+} w słabych polach krystalicznych jest orbitalnym singletem ${}^{6}S_{5/2}$, stąd współczynnik rozszczepienia spektroskopowego g powinien być bliski czysto spinowej wartości. Jednakże stopień degeneracji, dopuszczalny w polach krystalicznych może być co najwyżej czterokrotnym. Dlatego sześciokrotnie zdegenerowany poziom podstawowy jonu Mn^{2+} w polu regularnym ulega słabemu rozszczepieniu, które może być opisane w wysokich rzędach teorii zaburzeń. Człony hamiltonianu opisujące to rozszczepienie muszą zawierać wyrazy czwartego stopnia S⁴. Hamiltonian spinowy jonu Mn^{2+} znajdującego się w polu regularnym ma postać:

$$H = g\beta BM + \frac{a}{180} \left[35S_Z^4 - 30S(S+1)S_Z^2 + 25S_Z^2 - 6S(S+1) + 3S^2(S+1)^2 \right] + \frac{a}{48} (S_+^4 + S_-^4) + (1) + \vec{S}A\vec{I} + \vec{I}P\vec{I} - \vec{B}g_I\vec{I}.$$

Występująca tu stała a charakteryzuje rozszczepienie poziomów spinowych w polu krystalicznym o symetrii regularnej. Wyrażenie na położenie poziomów energetycznych z dokładnością do drugiego rzędu ma postać:

$$E_{M,m} = g\beta BM + AMm + \frac{A^2}{2g\beta B} \left\{ m[M^2 - S(S+1) + M[I(I+1) - m^2]] \right\} + \frac{a}{1208} \left\{ 35\cos^4\theta - 30\cos^2\theta + 3 + 5\sin^2\theta\cos4\varphi \right\} \left\{ 35M^4 - [30S(S+1) - 25]M^2 + 3S^2(S+1)^2 - 6S(S+1) \right\} + \frac{a^2\sin^24\theta}{36764g\beta B} \left[\left\{ [S(S+1) - M(M-1)](2M+1)(\frac{81}{4} - 7M^2 - 7M) \right\}^2 + \left[[S(S+1) - M(M-1)](2M-1)(\frac{81}{4} - 7M^2 - 7M) \right\}^2 \right] \right\}$$

$$(2)$$

W zerowym polu magnetycznym sześć poziomów opisanych powyższymi równaniami stanowi dwie grupy odległe o 3a. Górny poziom przesunięty o wartość a w stosunku do energii jonu swobodnego jest kwartetem Γ_8 , dolny o energii – 2a jest dubletem Γ_7 .

Rys. 1. Rozszczepienie spinowych poziomów energetycznych jonu $3d^5$ w polu krystalicznym o symetrii regularnej (a) oraz widmo EPR jonu / $h\nu >> 3a$ / (b).

Na rys. 1 przedstawiono rozszczepienie spinowych poziomów jonu Mn^{2+} w polu krystalicznym o symetrii regularnej oraz widmo EPR jonu bez uwzględnienia oddziaływania nadsubtelnego. Jeżeli rozszczepienie nadsubtelne jest dużo większe od rozszczepienia w zerowym polu widmo EPR składa się z sześciu takich kwintetów jak na rys. 1.

Rys. 2. Doświadczalne widmo proszkowe jonów Mn^{2+} w regularnej sieci CaO i obliczone położenia pików pełnej struktury widma dozwolonego z wykorzystaniem zależności ujętych w tabeli 1. W obliczeniach przyjęto $B_0=342,8$ mT, A = -8,65 mT, a = 0,6 mT, g = 2,001.

Widmo EPR jonu Mn^{2+} w CaO przedstawia rys. 2. Położenie dozwolonej linii rezonansowej $M \rightarrow M-1$ jonu Mn^{2+} w sieci CaO opisuje następujące wyrażenie:

$$B_{M,m} = B_0 - Am - \frac{A^2}{2B_0} \left[\frac{35}{4} - m^2 + m(2M - 1) \right] - \frac{a}{384} (56M^3 - 84M^2 - 134M + 81)$$
(3)
(3)
(3)
(3)
(3)

Kąt θ jest kątem, jaki tworzy krystaliczna oś regularna o kierunku <001> z polem \vec{B} . Człony wyższych rzędów zaniedbano ze względu na ich niewielki wkład do widma proszkowego linii dozwolonych. Po zróżniczkowaniu równania (3) po kącie θ i φ i przyrównaniu pochodnych do zera otrzymuje się sześć punktów krytycznych (sześć par kątów θ_c i φ_c) i odpowiadające im wartości pól rezonansowych, w których wystąpią piki proszkowe. Niektóre z tych pików odpowiadają kierunkom krystalograficznie równoważnym. Stąd też jon Mn²⁺ w sieci regularnej CaO posiada trzy typy pików proszkowych odpowiadających trzem orientacjom pola magnetycznego względem osi krystalograficznych. Wartości kątów θ_c i φ_c oraz pola rezonansowe pików proszkowych przedstawia poniższa tabela.

Lp	Punkt	Oś	Тур	Położenie piku	Typ piku
	krytyczny	krystalograficzna	kierunku	w skali pola	proszkowego
			krystalograf.		
1	$\theta = 0^{\circ}$	[001]	<100>	B _{om} -R	$\theta = 0^{\circ}$
2	$\theta = 90^{\circ}$				$\theta = 0^{\circ}$
	$\varphi = 0^{o}$	[100]	<100>	B _{om} -R	
3	$\theta = 90^{\circ}$				$\theta = 90^{\circ}$
	$\varphi = 45^{\circ}$	[110]	<110>	$B_{om}+R/4$	$\varphi = 45^{\circ}$
4	$\theta = 45^{\circ}$				$\theta = 90^{\circ}$
	$\varphi = 0^{\circ}$	[101]	<110>	$B_{om}+R/4$	$\varphi = 45^{\circ}$
5	$\theta = 45^{\circ}$				$\theta = 90^{\circ}$
	$\varphi = 45^{\circ}$	[011]	<110>	$B_{om}+R/4$	$\varphi = 45^{\circ}$
6	$\theta = 54,74^{\circ}$				$\theta = 54,74^{\circ}$
	$\varphi = 45^{\circ}$	[111]	<111>	Bom+2R/3	$\varphi = 45^{\circ}$

Tabela 1. Piki proszkowe widma jonu Mn^{2+} w polu regularnym dla przejść dozwolonych $|M, m\rangle \leftrightarrow |M-1, m\rangle (M \neq 1/2)$.

gdzie:

$$B_{0m} = B_0 - mA - \frac{A^2}{2B_0} \left[\frac{35}{4} - m^2 + m(2M - 1) \right]$$
$$R = \frac{a}{48} (56M^3 - 84M^2 - 134M + 81)$$

Intensywność tych pików zależy głównie od ilości spinów tworzących dane kąty θ i ϕ z polem magnetycznym. Dlatego też pik $\theta = 0$ (tab.1) jest bardzo słaby i praktycznie nie obserwowany w widmie proszkowym jonu Mn²⁺ w sieci regularnej. Praktycznie do analizy $|M,m\rangle \leftrightarrow |M-1,m\rangle$ subtelnych przejść bierze dwa pozostałe się piki tj. $\theta = 90^{\circ}, \varphi = 45^{\circ} \text{ oraz } \theta = 54,74^{\circ}, \varphi = 45^{\circ}$. Przejście $|1/2,m\rangle \leftrightarrow |-1/2,m\rangle$ nie wykazuje anizotropii i piki proszkowe wszystkich typów pokrywają się. Wyjaśnia to bardzo dużą względną intensywność tego przejścia i trudności z zaobserwowaniem pozostałych przejść. Parametr a można natomiast określić z odpowiednich rozszczepień subtelnych widm (rys. 2).

II. Zagadnienia do opracowania

- 1. Istota zjawiska EPR.
- 2. Ogólna budowa spektrometru EPR.

3. Struktura subtelna i nadsubtelna widma EPR jonu paramagnetycznego o spinie elektronowym S>1/2 i jądrowym I>1/2.

4. Relacje opisujące wartości energii oraz pól rezonansowych jonu Mn^{2+} (S=5/2, I=5/2) w sieci kryształu.

5. Hamiltonian spinowy jonu Mn²⁺ dla układu o symetrii regularnej (kubicznej).

III. Przebieg ćwiczenia

III.1. Czynności wstępne

1. Przygotować spektrometr EPR do pomiarów zgodnie z jego instrukcją obsługi.

III.2. Przeprowadzić rejestrację widma EPR próbki CaO. W tym celu:

- 1. Umieścić próbkę CaO we wnęce spektrometru.
- 2. Dostroić częstość generatora mikrofal do częstości wnęki z próbką.
- 3. Dobrać poziom mocy mikrofal doprowadzonej do wnęki z próbką.
- 4. W programie ustawić parametry rejestracji widma na następujące wartości:
- pole stałe: B₀=340 mT,
- zakres przemiatania pola: B_p=20 mT,
- czas przemiatania: t_p=256 s,
- amplituda modulacji: B_m=0,125 x 1000 $\mu T,$
- faza fali modulującej: φ=70°,
- stała czasowa: τ=30 ms,
- wzmocnienie: $A_m = 1.10^4$.
- 5. Komendą "START" uruchomić program rejestracji.
- 6. Po zakończeniu rejestracji zapisać w danym katalogu widmo EPR oraz parametry rejestracji.
- 7. Wyjąć z wnęki próbkę, stosując się do instrukcji obsługi spektrometru.

IV. Opracowanie wyników pomiaru EPR jonów Mn²⁺

1. Wyznaczanie stałej A struktury nadsubtelnej

Stałą A struktury nadsubtelnej obliczamy mierząc położenia linii odpowiadających przejściom:

1)
$$M_s = +\frac{1}{2} \rightarrow -\frac{1}{2}; m = +\frac{5}{2}(B_{5/2})$$

2) $M_s = +\frac{1}{2} \rightarrow -\frac{1}{2}; m = -\frac{5}{2}(B_{-5/2})$
 $|A| = \left|\frac{B_{5/2} - B_{-5/2}}{5}\right| [mT]$
hub

 $|A| = \left| \frac{B_{5/2} - B_{-5/2}}{5} \right| (mT) \cdot 4,68g \left[10^{-4} \text{ cm}^{-1} \right]$

2. Wyznaczanie stałej g

Wartość g obliczyć w oparciu o wzór:

$$g = \frac{hv}{\beta B_0}$$

gdzie: $h = 6,626736 \cdot 10^{-34}$ Js

 $\beta = 9,274078 \cdot 10^{-24} \text{ J/T}$

v jest zmierzoną częstotliwością promieniowania oddziałującego z próbką umieszczoną we wnęce rezonansowej;

 B_0 jest wartością położenia środka centralnego sekstetu linii manganu, którą określa wyrażenie w postaci: $\frac{1}{2}(B_{1/2} + B_{-1/2}) = B_0 - \frac{17}{4}\frac{A^2}{B_0}$

Wartości pól $B_{1/2}$ i $B_{-1/2}$ (stanowiące trzecia i czwartą linię sekstetu) odczytujemy bezpośrednio z widma pomiarowego.

V. Literatura

1. J. Stankowski, A. Graja "Wstęp do elektroniki kwantowej" WKiŁ Warszawa 1972;

2. J. Stankowski, W. Hilczer "Wstęp do spektroskopii rezonansów magnetycznych", PWN Warszawa 2005;

3. L. A. Blumenfeld, W. W. Wojewodski, A. G. Siemionow "Zastosowanie elektronowego rezonansu w chemii" PWN Warszawa 1967, str. 108-135;

4.J. Rubio O., E. Munoz P., J. Boldy O. "EPR Power analysis for Mn²⁺ In cubic crystalline fields" The Journal of Chemical Physics, 15 January 1979, pp 633-638.